Membrane-associated aquaporin-1 facilitates osmotically driven water flux across the basolateral membrane of the thick ascending limb.

نویسندگان

  • Pablo D Cabral
  • Marcela Herrera
چکیده

The thick ascending limb of the loop of Henle (TAL) reabsorbs ∼30% of filtered NaCl but is impermeable to water. The observation that little water traverses the TAL indicates an absence of water channels at the apical membrane. Yet TAL cells swell when peritubular osmolality decreases indicating that water channels must be present in the basolateral side. Consequently, we hypothesized that the water channel aquaporin-1 (AQP1) facilitates water flux across the basolateral membrane of TALs. Western blotting revealed AQP1 expression in microdissected rat and mouse TALs. Double immunofluorescence showed that 95 ± 2% of tubules positive for the TAL-specific marker Tamm-Horsfall protein were also positive for AQP1 (n = 6). RT-PCR was used to demonstrate presence of AQP1 mRNA and the TAL-specific marker NKCC2 in microdissected TALs. Cell surface biotinylation assays showed that 23 ± 3% of the total pool of AQP1 was present at the TAL basolateral membrane (n = 7). To assess the functional importance of AQP1 in the basolateral membrane, we measured the rate of cell swelling initiated by decreasing peritubular osmolality as an indicator of water flux in microdissected TALs. Water flux was decreased by ∼50% in Aqp1 knockout mice compared with wild-types (4.0 ± 0.8 vs. 8.9 ± 1.7 fluorescent U/s, P < 0.02; n = 7). Furthermore, arginine vasopressin increased TAL AQP1 expression by 135 ± 17% (glycosylated) and 41 ± 11% (nonglycosylated; P < 0.01; n =5). We conclude that 1) the TAL expresses AQP1, 2) ∼23% of the total pool of AQP1 is localized to the basolateral membrane, 3) AQP1 mediates a significant portion of basolateral water flux, and 4) AQP1 is upregulated in TALs of rats infused with dDAVP. AQP1 could play an important role in regulation of TAL cell volume during changes in interstitial osmolality, such as during a high-salt diet or water deprivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The thick ascending limb and water channels: half-full or half-empty.

THE THICK ASCENDING LIMB of the loop of Henle plays a central role in urine concentration and dilution (reviewed in Ref. 7). The thick ascending limb actively reabsorbs NaCl but has an extremely low transepithelial osmotic water permeability, even in the presence of vasopressin (6). This combination of NaCl reabsorption without water reabsorption serves two vital functions: it provides NaCl to ...

متن کامل

Renal expression of aquaporins in liver cirrhosis induced by chronic common bile duct ligation in rats.

Semiquantitative immunoblotting was used to investigate the expression levels of the four major renal aquaporins, the Na-K-2Cl cotransporter of the thick ascending limb, the type 3 Na-H exchanger, and the Na-K-ATPase in kidneys from rats with cirrhosis secondary to common bile duct ligation (CBDL). These rats had significant water retention and hyponatremia. In contrast to models of cirrhosis i...

متن کامل

Water and solute permeabilities of medullary thick ascending limb apical and basolateral membranes.

The medullary thick ascending limb (MTAL) reabsorbs solute without water and concentrates [Formula: see text] in the interstitium without a favorable pH gradient, activities which require low water and NH3 permeabilities. The contributions of different apical and basolateral membrane structures to these low permeabilities are unclear. We isolated highly purified apical and basolateral MTAL plas...

متن کامل

Molecular Physiology of Water Balance.

To the Editor: In their review article on water balance, Knepper et al. (April 2 issue)1 discuss water channels (aquaporins) in renal tubular cells. They omit mention of the critical role played by aquaporin-1 in microvascular endothelia. In the renal microvasculature, endothelial aquaporin-1 mediates the osmotic water efflux across descending vasa recta and is required for regulation of medull...

متن کامل

Nanoparticle Separation Using Direct Contact Membrane Distillation and Its Fouling Study

Direct contact membrane distillation (DCMD) which emerges as an alternative separation technology can effectively perform a colloidal separation process under thermal driven force. DCMD is capable of extracting pure water from aqueous solutions containing non-volatile nanoparticles through the hydrophobic microporous membrane when a vapour pressure difference was established across the membrane...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 303 5  شماره 

صفحات  -

تاریخ انتشار 2012